Towards the Optimal Bayes Classifier Using an Extended Self-organising Map
نویسندگان
چکیده
In this paper, we propose an extended self-organising learning scheme, in which both distance measure and neighbourhood function have been replaced by the neuron's posterior probabilities. Updating of weights is within a limited but fixed sized neighbourhood of the winner. Each unit will converge to one component of a mixture distribution of input samples, so that an optimal pattern classifier can be formed. The proposed learning scheme can be used to train other forms of unsupervised networks, such as radial-basis-function networks. An application example on textured image segmentation is presented.
منابع مشابه
Self-Organising Maps in Document Classification: A Comparison with Six Machine Learning Methods
This paper focuses on the use of self-organising maps, also known as Kohonen maps, for the classification task of text documents. The aim is to effectively and automatically classify documents to separate classes based on their topics. The classification with self-organising map was tested with three data sets and the results were then compared to those of six well known baseline methods: k-mea...
متن کاملIntelligent and Robust Genetic Algorithm Based Classifier
The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...
متن کاملOnline Self-Organised Map Classifiers as Text Filters for Spam Email Detection
Email communication today is a way of working and communicating for most businesses and public in general. Being able to efficiently receive and send emails therefore becomes a must. Spam email detection and removal then becomes a vital process for the successful email communications, security and convenience. This paper describes a novel way of analysing and filtering incoming emails based on ...
متن کاملFusion of Structure Adaptive Self-organizing Maps Using Fuzzy Integral
Recently, many researchers attempt to develop an effective SOM-based pattern recognizer for high performance classification. Structure adaptive self-organizing map (SASOM) is a variant of SOM that is useful to pattern recognition and visualization. Fusion of classifiers can overcome the limitation of a single classifier by complementing each other. Fuzzy integral is a combination scheme that us...
متن کاملText Document Pre-Processing Using the Bayes Formula for Classification Based on the Vector Space Model
This work utilizes the Bayes formula to vectorize a document according to a probability distribution based on keywords reflecting the probable categories that the document may belong to. The Bayes formula gives a range of probabilities to which the document can be assigned according to a pre determined set of topics (categories). Using this probability distribution as the vectors to represent t...
متن کامل